Over Engineering CronJobs

Building an Enterprise Ready™ CTF Infrastructure, For Fun

@mircodezorzi

Developers are drawn to
complexity like moths to a flame,
often with the same outcome.

Neal Ford

while true; do
for target in ${TARGETS[@]}; do
python exploit.py "$target" "$PORT"
| grep -Eo "$FLAG_FORMAT"
| jg -s =R 'split("\n")'
| curl "$ENDPOINT" --data @-
-H 'Content: application/json'
-H "Authentication: $TEAM_TOKEN"
done
sleep "$TICK"
done;

—

while true; do
for target in ${TARGETS[@]}; do
python exploit.py "$target" "$PORT"
| grep —-Eo "$FLAG_FORMAT"
| jg -s -R 'split("\n")'
| curl "$ENDPOINT" --data @-
-H 'Content: application/json'
-H "Authentication: $TEAM_TOKEN"
done
sleep "$TICK"
done;

—

while true; do
for target in ${TARGETS[@]}; do
python exploit.py "$target" "$PORT"
| grep —-Eo "$FLAG_FORMAT"
| jg -s -R 'split("\n")"'
| curl "$ENDPOINT" --data @-
-H 'Content: application/json'
-H "Authentication: $TEAM_TOKEN"
done
sleep "$TICK"
done;

s

| curl "$ENDPOINT" --data @-
-H 'Content: application/json'
-H "Authentication: $TEAM_TOKEN"

~ =~

while true; do
for target in ${TARGETS[@]}; do
python exploit.py "$target" "$PORT"
| grep -Eo "$FLAG_FORMAT"
| jg -s =R 'split("\n")'
| curl "$ENDPOINT" --data @-
-H 'Content: application/json'
-H "Authentication: $TEAM_TOKEN"
done
sleep "$TICK"
done;

—

|

CAN YOU PASS
THE SALT?

I SAD-
T KNOW! T™M DEVELOPING
A SYSTEM TO PASS YOU
ARBITRARY CONDIMENTS.

ITS BEEN 20)

MINUTES!

J ITLL SAVE TIME
IN THE LONG RuN!

\’:‘
7

XKCD

AN e

No isolation between exploits;

No versioning of exploits;

No retries or timeouts for exploit runs;
No observability (monitoring & logging);
No submission batching;

And most importantly, it’s boring!

Attocker

Submitter

Submission Server

The Submitter

1. Operable
2. Resilient
3. Scriptable

import requests
from submitter import SubmissionResult as SR

def submit(flags):
response = requests.post(
url=SUBMISSION_ENDPOINT,
headers={
'Authorization': TEAM_TOKEN,

3
json=flags,
)
if response.status_code = 429:

return SR.RateLimited

return SR.Accepted if response.status_code = 200 else SR.Unknown

Submitter Submission Server

"flag": "FLAG{deadbeefdeadbeef}",
"host": "10.10.5.10",

"exploit": "web-sqli",

"version": "edc8e75",
"stolen_at": 1679584353,
"enqueued_at": 1679584554

Considerations:
- Enrich ﬂag information about tick of origin?
- Deduplication of ﬂags using a persistent store

submitter_flags_pending
submitter_flags_processing
submitter_flags_status_count
submitter_error_count
submitter_flags_rate_limited_count
submitter_eval_duration
submitter_submission_duration
submitter_stolen_delay_duration
submitter_enqueued_delay_duration

Number of currently queued messages

Number of messages currently being processed

Number of messages processed, segmented by evaluation result, host, exploit, and version

Number of errors generated by the submitter, segmented by error

Number of times that the submitter has been rate limited

Duration of the interpreter evaluation

Duration of the entire submission pipeline

Delay between the flag being stolen, and the flag being successfully submitted to the game server
Delay between the flag being enqueued, and the flag being successfully submitted to the game server

The Attacker

1. Isolation
2. Versioning

3. Distributed

Dockerfile
main
requests.txt

L Attacker

yL Attacker J \

———

/1 Attocker
sy

Attocker W)
| \ Attocker

Leader

o Pu“ repos}‘tom/
@ build image and push it to OCI

e push job to queue

o consume :Xd’ from queue

e pu“ imoxge from OCI

X Attacker J

e

N\

'0

.

Worker (

—:_=_> &t Server v
J_> Regist
| gty

Attocker

"host": "10.0.1.1",

"port': 8080,

"image": "deadbeef:deadbeef",
"enqueued_at": 1679584554

The CLI

A I A I A I A It A It

A

Create a reference service
flagctl create service http-server --port=8080

Create a reference bucket
flagctl create bucket default --hostsfile=/etc/targets

Create an exploit using the pwntools template
flagctl create exploit pwn-rce \
--service=http-server --bucket=default --template=python-pwntools

Edit your exploit
vim pwn-rce/main

Push the changes to remote
flagctl push pwn-rce

Start the exploit
flagctl start pwn-rce

Run exploits locally, use implicit bucket 'default'
$ flagctl run exploit.py --service=http-server

Run command with remote service and bucket
$ flagctl run --command='python3 exploit.py {{ .Host }} {{ .Port }}' \
--service=http-server --bucket=default /path/to/file

Specify custom port and hosts
$ flagctl run --command='python3 exploit.py {{ .Host }} {{ .Port }}' \
--port=8080 --hostsfile=/etc/targets /path/to/file

Run dockerized exploit
$ flagctl run --docker --port=8080 --hostsfile=/etc/targets /path/to/dockerfile

$ flagctl help

State management:

create Create a resource

get Display one or more resources

describe Display detailed information about a resource
edit Edit a resources

delete Delete a resource

Exploit management:
push Push exploit
clone Clone an exploit

Exploit status management:

start Start an exploit

stop Stop an exploit

checkout checkout exploit to a particular commit

logs Fetch the logs for an exploit
Miscellaneous:

submit Manually submit flags through stdin

run Run exploit locally

Use "flagctl <command> --help" for more information about a given command.

attacker_job_executed_count Number of executed jobs

attacker_job_duration Duration of the jobs

attacker_job_error_count Number of errors generated by the job
attacker_exploit_build_duration | Duration of the exploit building pipeline
attacker_enqueue_delay_duration | Delay between jobs being enqueued and being consumed

Accepted Duplicate Invalid old

KN 5 ENES

Unknown Error

29

v Graphs
Flags By Status

25 == accepted
== duplicate
= invalid

20
- old
- OWN

15 == unknown

10

05

0.0

16:56:20 16:56:30 16:56:40 16:56:50 16:57:00 16:57:10 16:57:20 16:57:30 16:57:40 16:57:50 16:58:00 16:58:10 16:58:20 16:58:30 16:58:40 16:58:50
Flags By Exploit Flags By Version Flags By Host

s = abc s = abc 25 - abc

20 20 20

15 15 15

1.0 10 1.0

05 05 05

0.0 0.0 0.0

16:56:30 16:57.00 16:57:30 16:58:00 16:58:30 16:56:30 16:57:00 16:57:30 16:58:00 16:58:30 16:56:30 16:57.00 16:57:30 16:58:00 16:58:30

Honorable Mention: The Proxy

0000

eBPF routing rules

route traffic to omalyzgr
load balancer

rule engine

stateless auery engine

=

=

Attocker/Bot

Reverse Pr*oxt/

v

Trabffic Index

Tv

Rule Engine

777

Service

—p
4=__(

' Readwise v

T
23] “— i

Apple Notes

Apple Notes

Questions?

